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Thermal equilibrium between (quantum) systems is taken to mean stability for 
the combined system. Necessary and sufficient conditions for such stability are 
found and used to show that any system in equilibrium with suitably complex 
second system ("heat bath") will be characterized by a canonical ensemble. 
Thus the notion of temperature is derived directly from that of equilibrium, 
without, for example, recourse to microcanonical ensembles or information 
theory. Discussed briefly are the generalization of these results to grand 
canonic~ ensembles and their application to the equilibrium between a black 
hole and the surrounding radiation field. 

Al though in  most  cases the canonica l  ensemble  adequate ly  describes 
the rmodynamic  equi l ibr ium,  there are impor tan t  physical  systems for which 
it c anno t  be used. For  example, the defining relat ions 

p = e - P H / Z  

Z = t r e  -#H ( I )  

imply on  the one h a n d  

( l o g Z ) "  = Z " / Z -  ( Z ' / Z )  2 

= A H  2 

and  on  the other 

( log Z ) " =  - d_d ( H ) =  T 2 d ( I t )  
dB d T  
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whence the heat capacity d ( H ) / d T  would always be />0. But in fact 
gravitationally bound systems such as stars and black holes are known to 
display negative heat capacities. Does this mean that the canonical ensem- 
ble is merely a mathematically convenient form, sometimes useful but  
sometimes to be replaced by other constructions such as the microcanoni- 
cal ensemble? Or is it the only true representative of thermal equilibrium 
so that systems like stars cannot be considered as truly thermodynamic? 

The present paper will approach these questions neither from the 
information-theoretic viewpoint, nor by means of some infinite replication 
of the system concerned. Rather (cf. Born, 1964) we will adopt as basic the 
idea of equilibrium between a single pair of individual (quantum mechani- 
cal) systems, a notion which itself is not obviously free from ambiguity as 
appears, e.g., in discussions of thermal equilibrium between relatively 
moving bodies. 

That  two systems are in thermal equilibrium means, more or less by 
definition, that their states do not change when heat is allowed to flow 
between them; and of course it should not matter exactly by what means 
the systems are thermally coupled. Aside from equating the idea of 
"allowing heat to flow" to that of introducing an arbitrary weak coupling 
between the two systems, we will adopt the requirement just stated as the 
criterion of thermal equilibrium. It will follow then first of all that only 
certain states of a given system (including the canonical and microcanoni- 
cal ensembles) are capable of being in equilibrium at all, no matter with 
what other system, and secondly (though less rigorously) that if a system is 
sufficiently complex to be called a "heat bath" then only canonical states 
can be in equilibrium with it. 

As just proposed, our notion of thermal equilibrium between individ- 
ual systems reduces in effect to a kind of stability for the combined system. 
In order to formulate this precisely let us introduce, for a given system S, 
the corresponding Hilbert space D, (unperturbed) Hamiltonian H, and 
space P of statistical states (density matrices). Recall also that, because of 
Liouville's theorem, or rather the unitarity of the time-evolution operator, 
we cannot, without some sort of "coarse graining" ask that a finite system 
actually approach equilibrium as t~o r  Instead, we will take "stability" to 
mean only that a small change in H produces a change in p which remains 
small for all time. 2 

2This might seem to be a needlessly weak requirement for thermal stability. Thus, because a 
pair of systems at the same temperature should, when thermally coupled, settle down into a 
nearby equilibrium state of the combined system, we certainly could ask such a nearby state 
exist, even if (because of the course-graining problem) we cannot see the settling down 
mathematicaUy. However, it turns out--at least when spec(H) is cliscrete--that Definition 1 
will already entail the existence of nearby stationary states of the perturbed system. 



Canonical Ensemble 311 

Definition 1. p ~ P is an  h-stable equilibrium state of S iff for  every 
ne ighborhood  N of  p there are ne ighborhoods  M of p and W of H such 
that  V H  E W the evolution genera ted  b y / - )  carries M into N for all time. 3 
(In part icular  p itself must  be stationary.)  

Definition 2. Two systems S A, SB with Hamil tonians  HA, H B and in 
states PA, PB are in h equilibrium if the combined  state p = p A |  is an 
h-stable equil ibrium state of the combined  system, S. 

Mathemat ica l ly  each word  "ne ighborhood"  in Definit ion 1 presup- 
poses a topology. W h e n  the space 19 is finite dimensional,  these topologies 
are unique (and obvious), but  unfor tunate ly  m a n y  the rmodynamic  systems 
- - n o t  least among  them heat  b a t h s - - h a v e  u n b o u n d e d  Hamil tonians  and  
(therefore) infinite-dimensional Hilbert  spaces. For  general 19 we can 
in t roduce what  seem to be convenient  topologies as follows. 

Let ~(~) be the space of b o u n d e d  linear operators in 19. Having  
identified P with a subset of  s  [namely, the set P(b): = ( p c E ( b ) [ p / > 0  
and  tr p = 1 ) of normal ized densi ty matrices] we can use for it the topology  
it thereby inherits. 4 The possible Hamil tonians,  however, are d rawn not  
only  f rom ~(~), but  f rom the space EvsA(~) of  not  necessarily b o u n d e d  
self-joint operators on  19. In  this space, we can consider two operators to be 
close to each other  when their difference is a bounded  operator  of  small 
norm.  $ 

Rewrit ten in accord  with these choices our  first definit ion would  read 
as follows: 

pEP(19) is an  h-stable equilibrium state iff V e > 0 ,  361 ,62>0,  
vP~e(b), v/~ ~EvsA(19), IIb-pll <~al, and  IIH-HII <82= 
Vtll (:(t)b(J(-  t)-Pll  <' ,  where U ( t ) =  e x p ( -  iHt). 

However,  I claim that  the following simpler version is equivalent to that  
just  stated: 

3Some people use the term "structural stabihty" for a concept of this type, which envisions 
perturbing the equations of motion as well as the initial conditions. For a quantum system 
(but not necessarily for its classical analog!), the former sort of perturbation is the only sort 
that is relevant since the unitarity of the time-evolution operator ensures that any stationary 
state is stable under perturbation of initial conditions alone. 

4This turns out to be also the topology of pointwise convergence on elements of s when 
pEP acts on ~(~) by p(A)ftr(pA). Using this fact one can check that when b---~a| the 
map, tr B, from P(O) to P(OA) gotten by "tracing out" the bB variables is continuous. In 
particular, this ensures that Definition 2 implies that not only p but also the relative state, 
trBp, describing SA is stable in the required sense. Conversely, any topology for P ought to 
have the property just described if it is to be used in the context of Definition 2. 

5The "gap topology" of Kato (1966) might be more natural but would, I think, lead to the 
same results in any case. 



312 Sorkin 

Definition 1'. pEP(t)) is an h-stable equilibrium state iff V�9 >0,  
=18 >0,  V/-)~EusA(b), l i B - n i l  <8~Vtl l  t)(t)pO(-t)-pll <�9 where U(t) ^ 
= exp( -  iHt). 

Proof. We must show the present condition implies the previous one 
(the opposite implication being obvious). So suppose p is h stable in the 
present sense. Then for all t, 

II U(t)bU(- t ) -  oil < [I t ) ( t ) ( b - p ) t ) ( -  t)l [ + II t)(t)p t)(- t) -PI[ 

= lib-pll + II ~rp~r-1-pll 
Given �9 >0,  we can by hypothesis find 8 so that the second term is < � 9  
for all/-) such that [ IH-H] I  <8. Thus the previous condition is satisfied 
with 81 = e/2  and 8 2 = 8. �9 

Doubtless the present framework is neither mathematically nor physi- 
cally the best possible. In the way of generalization one might want to 
replace E (~) by an arbitrary "factor" or even an arbitrary C* algebra, P(~)) 
by the set of all states on that algebra, etc. It would be interesting to see to 
what extent the results presented here carry over to such a more general 
context, which may well be needed, e.g., by quantum field theory. 6 In 
places we will make further restrictions for mathematical convenience, in 
particular that the spectrum of the Hamiltonian be discrete. 

Theorem 1. If p is an h-stable equilibrium state then p is a function 
of the Hamiltonian H. 

Proof. Since p is stationary U(t)pU(-t)=p [which fact, namely, that 
U(t) commutes with p, we will write as "U(t)~p"] for all t. Let W E EsA (~) 
---{TEE(D)IT--T*} and suppose �9 and 8 are as in Definition 1'. Set 
V= �89 II Wl l~W.  Then II Vii <8 so that by hypothesis Vtll O(t)vO(- t ) -  Pll 
<e, where U(t)=exp( Z iHt) and H =  H +  V.^ Suppose now that W~H. 
Then 7 also V~ H and U( t) = e-iVtu( t) so that U( t)pU(- t) = e-iVt peiVt. We 
have then Vc38Vtlle-iVtpeiVt-pll<�9 whence, since Vc~ IV, the same 
holds with W replacing V. But now the arbitrariness of e shows Vte-iWt ~p, 
which is equivalent [see, e.g., Theorem VIII.13 of Read and Simon (1972)] 
to W~p. Noting that for any T ~ E(b), T~H iff both its real and imaginary 

6As it happens, much work has been devoted recently to finding results in this direction 
(albeit in the context of the infinite thermodynamic limit) (Bratelli, 1978a; Bratelli et 
al., 1978b). 

~See Riesz and Sz.-Nagy 0955) for this and for the d�9 of A~B when A is unbounded. 



Canonical Ensemble 313 

parts ~H we conclude that VT E ~(~)T~H~T~p, which means 8 that p is a 
function of H. �9 

Remark 1. This proof did not use the specific topology of P in any 
important way. Moreover it would work as well using any other of the 
usual topologies for s (~9) since thay are all weaker than ours. 

Theorem 2. If f: R--->R is continuous and p - f ( H )  belongs to P(b), 
then p is an h-stable equilibrium state. 

Proof Since by definition t r p = l < o 0 ,  f(x)---~O as [x[~oo. [More 
accurately, since only f~ spec(H) affects f(H), f can only be taken to have 
this property.] For such an f the map A--.f(A) of EusA into Es~ is 
continuous [this being Theorem VIII.20 of Reed and Simon (1972) since it 
follows easily from Theorems (2.14) and (2.20) of Chapter IV of Kato 
(1962) that any sequence H~ which approaches H in our sense also 
approaches H in the "norm-resolvent" sense.] In particular, given �9 there is 
8 such that IL/-) - nil  <~ implies IIf(I~t)-f(H)II <�9  But f(/-1), being a 
function of H, is stationary, (though not necessarily of unit, or even of 
finite, trace) under the evolution U(t) generated by H: 

O(t)If(It) 

so that for all t [and writing t3(t)= U(t)pU(-t)]  

lib(t)- f( / t)II--H/)(t)  [p - f ( / - ) )  ] U ( -  t)[I 

= l ip-f( / - ) ) [ I  (since U is unitary) 

- - I I f ( n ) - f ( ~ 0 ) l l  
Thus for all t, 

lib(t) -pll < IlA(t)-f(/-))I[ + II f ( /1)  -pll  = 2llf(H) - f (H)[ I  < �9  

Corollary. If spec(H) is discrete then p E P is h stable iff p--f(H) for 
some f: g~---~R 

Proof If f: R---~R and p=f(H) then, without changing f(H) we can 
redefinef freely on R \ s p e c ( H ) .  Since spec(H) is discrete this can be done 
so as to make f continuous. �9 

sit may be that this follows only when b is a separable Hilbert space; see Section 129 of Riesz 
and Sz.-Nagy (1955), which also proves it in this case. 
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Remark 2. With somewhat more effort we could prove the more 
general result that, without any restriction on the spectrum of H, p is h 
stablee, p = f ( H )  for some continuous function f. 

Theorem 3. Let S A, Sll be two systems with Hamiltonians Ha, Hll 
and in states Oa, On. Suppose that H a and Hll have discrete 
spectra. Then S a and Sll are in h equilibrium if and only if (i) 
pA=fA(Ha),pll=fll(Hll) for real-valued functions fa,ll, and (ii) 
Vc~, e~ espec(HA), Ve~, e~ espec(Hll) 

t tr  t / !  t _ / !  t 

e~  - -  e A = ell  - -  e B = = > f a ( e A )  / f A ( e a )  - -  f l l ( e l l )  / f l l ( e l l )  

(the latter condition being understood in the obvious way when 
either of the denominators vanishes.) In particular, if Oa and Oil 
are canonical states at the same temperature [see equation (1)] 
then S A and Sll are in h equilibrium. 

Proof Let S be the combined system with Hilbert space b=[3A| 
and Hamiltonian H = H a + Hll (or more properly, H a | 1 + 1 | Hll). By 
definition S A and Sll are in h equilibrium iff p=pA| is h stable. 
In particular this means that PA and Oil are separately h stable (just take V 
of the form V A | 1 [resp. 1| Vll] in Definition 1'] whence according to 
Theorem 1 pa=fA(HA),ps=fll(Hll). Assuming this, h stability of p 
amounts to the condition 

L(I-Ia)| =f(/~A + ~/~) (2) 

To see what this means write H A in the form 

nA = E x,E, 
l 

where {ht} are the eigenvalues of H A and {Et} the projections onto the 
corresponding eigensubspaces [this is possible by our assumption on 
spec(HA) ]. Similary, write 

m 

Putting Elm = Et| F m we get, because Y~Et= 1, ZF , ,=  1, 

n =  y. x,E,| + y. ~ l |  = E X,e,| + Y~ ~me,| 
l m lm ml  

= E (x,+ ~.)E,~ = E ~.O. 
lm n 

(3) 
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where the 1,. range over the distinct values )t t + /% and where 

315 

G,, = E Ezra (4) 
~t + pm = vn 

Furthermore, EtmErm, = ElEt , |  FmF m, = 8#,8,~m,Elm, Etm* = Elm, and 

~lm glm~-(~l El)@(~m fm) ~ l  

so that the G, are a resolution of unity and (3) is in fact the spectral 
decomposition of H. Now PA =fA(HA)=Y' fA(~t)EI  (and similarly Ps) so 
that 

p = pA |  = E fA(X')fs( 'm)e'm 
lm 

Comparing with (3) and (4) we see that p is of the form f (H) ,  namely, of 
the form 

p = 

if and only if one can choose f so that 

V n V I V m  ~l + ~,~ = r , ~ f A  (~t)fs( ~,,) =f(v~). 

Clearly (ii) is the necessary and sufficient condition that this be possible. 
Finally, if PA and Ps are canonical with positive temperature f l - l ,  

then 

= 

- ' = " ' (In case T =  0 the canon- which equalsfs(e~)/ fs(e 'B) when e~' e A c s - c s. 
ical state O is just Go/ t rG o, where Po is the least eigenvalue of H, and 
clearly is the product of the T =  0 canonical states of H a and H s.) �9 

Remark  3. It seems likely that, at the cost of some measure-theoretic 
complication, one could establish Theorem 3 in full generality except that, 
following Remark 2, fA and f s  would be required to be continuous in 
condition (i). 

Theorem 3 shows that the canonical ensemble (when it exists) is a sort 
of universal equilibrium state. On the other hand, it is also clear from 
Theorem 3 that for most pairs of simple systems S A, S s,  there will be states 
PA, PS of mutual h equilibrium neither of which is canonical, just as one 
would expect on physical grounds. By the same token, however, one might 



316 Sorkin 

also expect that a system in contact with a "heat bath" would be char- 
acterized by a definite temperature, and therefore possibly by a canonical 
state at that temperature. 

At this point I would like to define a heat bath as a system whose 
Hamiltonian's spectrum is of the form [a, oo), 9 but unfortunately I do not 
know how to make sense of such a case. [Perhaps by replacing E(b) by a 
type 1I 1 factor?] Let us therefore work with the less rigorous notion of a 
Hamiltonian whose spectrum is defined by a level-density funct ion/ t  and 
assume that support ( / 0 = [ a ,  ~ ) .  We are then trying to describe a heat 
bath as a system with a density of energy levels which is very high and 
becomes infinite in, say, the limit of infinite volume. (In practice, the 
criterion would be that the level spacing of H B be much smaller than that 
of H a.) Notice that not only systems one would usually think of as heat 
baths have this character but  also much simpler systems such as a single 
free particle in a very large box. 

"'Theorem" 4. If a heat bath S s is in h equilibrium with a second 
system S a for which spec(Ha) is discrete, then PA is a canonical 
ensemble. 

Remark 4. The term "heat bath" might carry the misleading connota- 
tion of "heat bath at temperature T," but as used here it has to do with the 
construction of S s alone, not with its state. 

"Proof.'" From Theorem 3 we can assume pa=fa(HA),ps=fs(Hn). 
Assume also that "spec(Hs) = [a, oo)" as discussed above. Notice that fs(e) 
is the occupation probability per state at energy e, so that, e.g., trpB = 
f~fB(x)tts(x)dx. We could let fs  be any measurable (with respect to the 
measure fl~B(x)dx] function and convert to continuous functions by con- 
volution with smooth functions of compact support, but in accord with the 
general level of rigor, and with Remark 3, let us simply take fs  to be 
continuous. As for Pa we can number the eigenvalues of H A in increasing 
order, e0,el,c 2 . . . . .  and write Pt, for fa(~) .  Condition (ii) of Theorem 3 
becomes then (dropping the subscript on "fs') 

Vj, k; Vx,y )a,  Ck--ej-~y--x 

=pJ(y) (5) 

I claim that if p: = 0  for a n y j  then all subsequent p 's  vanish. In fact if k > j  
and i f  A c :  = e k - % then taking y = x + hc in (5), 

pkf(X) =p.jf(y) --0 Vx > a  

90r (-- oo,a] in the ease of negative temperatures. 
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Since f ; ~ 0  this implies that Pk =0  as claimed. In particular, we see that 
P0 > 0. It can happen thatp~ = 0, but in that case all otherp's vanish as well 
so that PA represents a canonical ensemble with T =  0, and we are done. 

Suppose then that pz > 0 and set Ae = ~1- %,fl= --log(Pl/Po)/Ae, and 
f (x)  = g(x)e-#X. Equation (5) (with j = 0, k = I, and y = x + &e) becomes the 
statement that g is periodic with period Ae: 

Vx>~O g ( x + A ~ ) = g ( x )  (6) 

Furthermore, if any p k = 0 ( ~ k > 0 ) ,  then again from (5) (with j = 0  and 
y = x + c k - -  %) 

f ( y ) = 0  Vy ~>a+ck-  % 

whence, because of the periodicity (6), f = 0 ,  which is impossible. Therefore 
pk > 0 for all k, which allows us to repeat the derivation of (6) for all pairs 

j ,  k, getting 

Vj, k f ( x )  = gjk(x)e-gkx (7) 

where fljk = - - log(Pk /P j ) / ( ck -  ~') and gjk is periodic with period ~k- ~. 
Since f (and therefore g) is continuous the different expressions (7) will be 
compatible only if all the fl 's are equal, which in turn says that OA is 
canonical. [] 

If we apply this result to a heat bath in the ordinary sense, namely, an 
infinite collection of weakly coupled subsystems, all in thermal equilibrium 
with each other, then we conclude at once that each finite subsystem must 
be in a canonical state. Moreover, we can see to some extent why the usual 
approach based on a microcanonical ensemble for such a bath as a whole 
leads to this same conclusion. For according to Theorem 2, the micro- 
canonical ensemble (more accurately any p = f ( H )  where f is sharply 
peaked but continuous) is an h-stable state of the whole bath. To the extent 
that the subsystems behave independently, this means, by the terms of 
Definition 2, that each subsystem is in h equilibrium with the rest of the 
bath, and therefore in a canonical state as we have just remarked. 

The question of independence just alluded to points to a possible 
loophole in the reasoning which culminated in Theorem 4. Even if, in 
Definition 2, p=pA~pB w e r e  not itself stable, PA and PB still might be 
deemed to be in thermal equilibrium as long as the relative states trBp and 
tr A p remained stable. In other words, one would allow the coupling V to 
introduce essential correlations between SA and S n as long as these were 
undetectable by observing S A and S B separately. Luckily it turns out that 
such a weakening of Definition 3 would not of itself actually widen the 
class of h-equilibrium states. Perhaps, though, it might in the context of the 
following generalization, which in any case is much more important 
physically. 
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To couple S A with S e we have allowed ourselves any interaction 
whatsoever, whereas basic principles such as locality and conservation laws 
might in reality restrict our choice of V's. Suppose then that the possible 
interactions, V, are comprised in a (von Neumann) algebra, o / c  E(b). In 
the proof of Theorem 1 we get now 

( V E  oz and V~H) ~ V~O 

By some early theorems of Dixmier (1969) this is the same as 

(where o7': -- { T e s E r T~A }), i.e., 

In other words p no longer need be "made from" H alone but from H 
together with those operators conserved by all possible interactions V. In 
the particularly simple case where these conserved operators (the elements 
of oz') commute among themselves (and with H )  and are additive for 
composite systems, we cart expect to recover a suitable generalization of 
Theorem 4, 

For example, if J is a single absolutely conserved additive quantity 
and if o 7 = { J ) '  then we will have in equilibrium J=JA|174 
PA =fA(H~, JA),OB =f~(HB, JB)" The "joint spectrum" o of H and J will be 
a subset of the H-J plane and (writing "~" for a point of this plane) the 
analog of condition (ii) of Theorem 3 will be 

~.~, ~ e aA,~,~ ~ ~ a  s and ~] -~.~ = ~ - ~  

Again the "generalized canonical ensemble" 

p = Z ~ l e - ~ n - ~  

is a universal solution and in many circumstances will be essentially the 
unique solution for Pa if Ps is suitably complex. 

Finally let us return to one of our original questions and ask what 
becomes of Theorem 4 when SA is, say, a black hole and S s is the 
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su r round ing  r ad i a t i on  field, the  c o m b i n e d  sys tem S =  S~ + S B be ing  en- 
c losed in a box of  vo lume  V)  ~ 

F o r  the b l ack  hole, 

a n d  ( taking k _  = 1) 

so that  

S (  = en t ropy)  ~ a r e a ~  M 2 

0 2S 
fl -~T -I = O S / O M ~ M ,  

OM 2 
- 1  (8) 

N ( =  n u m b e r  of  levels) ~ e s 

O N _ t i e S  MeM~ level dens i ty  = OM 

while for  the r ad i a t i on  

S ~  T3V, U ~  T4V 

=::~S~(U3V) 1/4, O SS  ~. B ~  U -1/4V1/4 
OU 

0 2 S / 0 U 2 ~ -  U-5/4V1/4~I~U- I 

(9) 

and  as a lways  

ON 
O U ~ B e S  

F o r  equ i l ib r ium/3  A = fib = fl, i.e., M ~ f l .  
In  the context  of T h e o r e m  4, the cond i t ion  tha t  S B act  as a hea t  ba th  

for  S A is 

OM 
ON. (10) 

r fle S A << fle sB 

r <<s. 

r T 3 V ~  U/  T ~  UM 

r (11) 

l~ avoid worrying about things like stimulated emission, one might want to surround the 
hole with a smaller box and think of that as Sa. This would hardly affect the analysis in the 
text. 
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By comparison the condition for thermodynamically stable equilibrium is 
that entropy be maximized with respect to energy exchange: 

02S A 02SB 
- -  + < o  (12) 
OM 2 

which says 

1 - -  f l U - l ~ 0  

o r  

�9 (13) 

In other words (and seemingly by coincidence!) the known condition (13) 
for thermodynamic stability turns out to be equivalent (11) to the condi- 
tion (10) that the radiation field act as a heat bath for the hole. 

There are thus two limit cases to which Theorem 4 applies. In the first 
case, M>> U, it merely requires the radiation field to be in a canonical 
state. But in the opposite limit, U > > M ,  Theorem 4 would require the hole  

to be in a canonical state, which is impossible as already remarked. (To see 
this impossibility directly, notice that equation (1) implies 

f0 ~ ON Z = e - ~M d M ~ f  e M2-  t~MdM 
8 M  

which diverges for all nonzero T.) The analysis of stability from the point 
of view of Theorem 4 has therefore (because of the aforementioned 
coincidence) merely confirmed the usual considerations in ruling out 
U>> M .  

On the other hand, the first case (U<< M), where the black hole serves 
as a bath for the radiation field, would also seem to be impossible. For 
although Theorem 4 would not now require Phole to be strictly canonical, 
the weaker requirement embodied in equation (7) (in which, recall, &k is 
periodic) is still enough to rule out a level density increasing as M 2. (The 
integral for Z would still diverge.) In view of the above discussion, this 
seems to mean that if in thermal equilibrium the state of the hole is not to 
depend on such features as the size and shape of the box enclosing it, then 
(insofar as one can even treat a black hole as a quantum system evolving 
in time according to Schrrdinger's equation) there must be fundamental 
restrictions on the couplings possible between a black hole and its 
surroundings. If so, then to search for a restriction of the right sort might 
help one to understand the dynamics of black holes in general. 
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